Scale Invariant Markov Models for Bayesian Inversion of Linear Inverse Problems
نویسندگان
چکیده
In a Bayesian approach for solving linear inverse problems one needs to specify the prior laws for calculation of the posterior law. A cost function can also be defined in order to have a common tool for various Bayesian estimators which depend on the data and the hyperparameters. The Gaussian case excepted, these estimators are not linear and so depend on the scale of the measurements. In this paper a weaker property than linearity is imposed on the Bayesian estimator, namely the scale invariance property (SIP). First, we state some results on linear estimation and then we introduce and justify a scale invariance axiom. We show that arbitrary choice of scale measurement can be avoided if the estimator has this SIP. Some examples of classical regularization procedures are shown to be scale invariant. Then we investigate general conditions on classes of Bayesian estimators which satisfy this SIP, as well as their consequences on the cost function and prior laws. We also show that classical methods for hyperparameters estimation (i.e., Maximum Likelihood and Generalized Maximum Likelihood) can be introduced for hyperparameters estimation, and we verify the SIP property for them. Finally we discuss how to choose the prior laws to obtain scale invariant Bayesian estimators. For this, we consider two cases of prior laws : entropic prior laws and first-order Markov models. In related preceding works [1, 2], the SIP constraints have been studied for the case of entropic prior laws. In this paper extension to the case of first-order Markov models is provided.
منابع مشابه
Inverse Problems in Imaging Systems and the General Bayesian Inversion Frawework
In this paper, first a great number of inverse problems which arise in instrumentation, in computer imaging systems and in computer vision are presented. Then a common general forward modeling for them is given and the corresponding inversion problem is presented. Then, after showing the inadequacy of the classical analytical and least square methods for these ill posed inverse problems, a Baye...
متن کاملScale Invariant Markov Models for Bayesianinversion of Linear
In a Bayesian approach for solving linear inverse problems one needs to specify the prior laws for calculation of the posterior law. A cost function can also be deened in order to have a common tool for various Bayesian estimators which depend on the data and the hyperparameters. The Gaussian case excepted, these estimators are not linear and so depend on the scale of the measurements. In this ...
متن کاملInverse problems in imaging systems and the general Bayesian inversion frawework
In this paper, first a great number of inverse problems which arise in instrumentation, in computer imaging systems and in computer vision are presented. Then a common general forward modeling for them is given and the corresponding inversion problem is presented. Then, after showing the inadequacy of the classical analytical and least square methods for these ill posed inverse problems, a Baye...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملInverse Problems in Imaging Systems and General Bayesian Inversion Framework
In this paper, first a great number of inverse problems which arise in instrumentation, in computer imaging systems and in computer vision are presented. Then a common general forward modeling for them is given and the corresponding inversion problem is presented. Then, after showing the inadequacy of the classical analytical and least square methods for these ill posed inverse problems, a Baye...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994